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Key Points:

• We analyse the eruption and propagation of two CMEs from the Sun up to Earth
and Mars during August 2018

• Both CMEs were observed at Earth, but the second largely missed Mars, possibly
due to interaction with a following high-speed solar wind stream

• The sequence of events observed resulted in a strong magnetic storm at Earth, but
only moderate disturbances at Mars
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Abstract
The activity of the Sun alternates between a solar minimum and a solar maximum, the for-
mer corresponding to a period of “quieter” status of the heliosphere. During solar minimum,
it is in principle more straightforward to follow eruptive events and solar wind structures
from their birth at the Sun throughout their interplanetary journey. In this paper, we re-
port analysis of the origin, evolution, and heliospheric impact of a series of solar transient
events that took place during the second half of August 2018, i.e. in the midst of the late
declining phase of Solar Cycle 24. In particular, we focus on two successive coronal mass
ejections (CMEs) and a following high-speed stream (HSS) on their way towards Earth and
Mars. We find that the first CME impacted both planets, whilst the second caused a strong
magnetic storm at Earth and went on to miss Mars, which nevertheless experienced space
weather effects from the stream interacting region (SIR) preceding the HSS. Analysis of
remote-sensing and in-situ data supported by heliospheric modelling suggests that CME–
HSS interaction resulted in the second CME rotating and deflecting in interplanetary space,
highlighting that accurately reproducing the ambient solar wind is crucial even during “sim-
pler” solar minimum periods. Lastly, we discuss the upstream solar wind conditions and
transient structures responsible for driving space weather effects at Earth and Mars.

Plain Language Summary
The Sun is characterised by a 11-year periodicity of its levels of activity, resulting in a
solar minimum and a solar maximum alternating approximately every 5.5 years. During
solar minimum, the Sun and its whole environment are in their simplest configuration, and
eruptive events are significantly less frequent. It follows that periods of lower activity are
generally considered optimal for tracking solar phenomena from their origin at the Sun
throughout their journey in interplanetary space. In this paper, we analyse a series of solar
eruptions that took place during the second half of August 2018 and follow them until
their arrival at Earth and Mars, taking into account their associated effects on the two
planets. We find that, even during solar minimum, the large-scale structure of the solar
and interplanetary environment can have more or less dramatic impacts on the evolution of
eruptions as they travel away from the Sun. Additionally, we suggest that the same event
can cause diverse levels of disturbances at different planets, depending on the particular
structure and properties of the impacting solar wind.

1 Introduction

The solar activity is characterised by numerous short- and long-term periodicities, the
most renowed of which is the 11-year solar magnetic activity cycle (Hathaway , 2015). Over
the duration of a full cycle, the number of sunspots as well as the fraction of solar surface
covered by them rise until reaching a maximum and then fall again. This trend is also
followed by the occurrence of solar eruptions, including flares (e.g., Benz , 2017) and coronal
mass ejections (CMES; e.g., Webb and Howard , 2012), which tend to peak close to solar
maximum and decrease drastically around solar minimum. Due to the general lack of active
regions, CMEs during solar minimum tend to be of the slow, streamer-blowout kind (e.g.,
Vourlidas and Webb, 2018), although some major active-region eruptions may still occur
(e.g., Nitta, 2011). Solar minimum periods are characterised by a simpler configuration of
the solar magnetic field, a generally slower and less variable solar wind, and a less energised
space environment (Riley et al., 2001, 2022). These aspects make minima excellent times
for tracing solar phenomena “from start to finish” and for defining the baseline heliophysical
system, giving rise to large, coordinated initiatives such as the Whole Sun Month (WSM;
Galvin and Kohl , 1999), which took place during the cycle 22–23 minimum, and the Whole
Heliosphere Interval (WHI; Thompson et al., 2011), which took place during the cycle 23–24
minimum. CME occurrence usually drops to about one per week, meaning that CME–CME
interactions tend to be significantly less likely and that it is possible to follow the evolution
of single CMEs and their interaction with solar wind structures, including the slow wind,
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high-speed streams (HSSs), and slow–fast stream interaction regions (SIRs; e.g., Richardson,
2018).

During the cycle 24–25 minimum, the availability of space- and ground-based assets at
various planets or scattered throughout the heliosphere, together with the growing consen-
sus about the importance of multi-point studies within the heliosphere as a whole, have led
to the establishment of an even more comprehensive follow-up effort to WSM and WHI, i.e.
the Whole Heliosphere and Planetary Interactions (WHPI; https://whpi.hao.ucar.edu/)
initiative, which aims to study the interconnected solar–heliospheric–planetary system. In
particular, a relatively large fleet of instruments was and is still operational at Mars, pro-
viding us with the opportunity to follow solar transients from the Sun to Earth and/or
Mars and to characterise their space weather response at the two planets. Occasionally,
the same transient may even encounter both Earth and Mars and elicit dissimilar impacts
at each planet. Earth is characterised by a strong intrinsic quasi-dipolar magnetic field
that is able to sustain a full-fledged magnetosphere (e.g., Pulkkinen, 2007). Since Earth’s
field is roughly directed towards the North in the equatorial plane at the magnetopause,
the most geoeffective solar wind structures are those containing southward magnetic field
(Zhang et al., 2007) as well as high speed and ram pressure (Gonzalez et al., 1994). Mars, on
the other hand, lacks a global magnetic dipole and interaction between the solar wind and
the Martian ionosphere generates a so-called induced magnetosphere (e.g., Bertucci et al.,
2011), which however differs from a Venus- or comet-like one due to the presence of localised
crustal magnetic fields (Acuna et al., 1998), thus leading to a “hybrid” magnetosphere (e.g.,
DiBraccio et al., 2018). As a result, the main parameters that regulate the arieffectiveness—
from the Greek name for Mars, ′Aρης or Áris—of a solar wind transient are the dynamic
pressure (Opgenoorth et al., 2013), usually enhanced in CMEs and SIRs, and the topology
of the interplanetary magnetic field (Jakosky et al., 2015a).

Despite the recent increasing interest in space weather at Mars (e.g., Geyer et al., 2021;
Huang et al., 2021; Lee et al., 2017; Luhmann et al., 2017; Zhao et al., 2021), most studies
have focused on the analysis of the consequences of large and clear solar events (e.g., Crider
et al., 2005; Jakosky et al., 2015a; Lee et al., 2018), whilst less is known about minor events
observed during periods of low solar activity (e.g., Kajdič et al., 2021; Sánchez-Cano et al.,
2017). In order to tackle this issue, we present in this article a detailed analysis of a sequence
of solar transients during the second half of August 2018 (i.e. during the late declining phase
of Solar Cycle 24) between Earth and Mars, which were separated by ∼8◦ in longitude, ∼2◦

in latitude, and ∼0.4 AU in radial distance. Some aspects of these events were addressed by
a number of studies (e.g., Abunin et al., 2020; Akala et al., 2021; Chen et al., 2019; Cherniak
and Zakharenkova, 2022; Gopalswamy et al., 2022; Mishra and Srivastava, 2019; Moro et al.,
2022; Nitta et al., 2021; Piersanti et al., 2020; Thampi et al., 2021; Younas et al., 2020; Zhang
et al., 2020), and our goal here is to provide a holistic Sun-to-Mars investigation of their
evolution from the Sun through the inner heliosphere and their effects at the two planets.
Accordingly, we first present remote-sensing observations of the eruptive events. Then, we
summarise the heliospheric context necessary to interpret in-situ observations at Earth and
Mars. Then, we show solar wind and interplanetary magnetic field measurements at the
two planets, with particular attention to the space weather responses to the interplanetary
disturbances. Finally, we discuss these observations within the larger context of terrestrial
and martian space weather during solar minimum periods.

2 Remote-Sensing Observations

The 20 August 2018 eruptive events were observed in remote-sensing imagery from
two vantage points, namely Earth and the Solar Terrestrial Relations Observatory Ahead
(STEREO-A; Kaiser et al., 2008) spacecraft, located ∼110◦ east of Earth close to 1 AU.
Here, we provide an overview of the sequence of events from their origin at the Sun (Sec-
tion 2.1) through their evolution across the solar corona (Section 2.2) and inner heliosphere
(Section 2.3).
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2.1 Solar Disc

The sequence of eruptive events analysed in this study commenced on 20 August 2018
from an extended quiet-Sun region in the northern hemisphere located close to the central
meridian from Earth’s perspective. Figure 1(a) shows the pre-eruptive configuration in
extreme ultra-violet (EUV) at 193 Å as seen by the Atmospheric Imaging Assembly (AIA;
Lemen et al., 2012) onboard the Solar Dynamics Observatory (SDO; Pesnell et al., 2012)
in orbit around Earth. The most striking features that were present on the Earth-facing
Sun are an extended filament channel (marked as ‘F’) and two coronal holes (CHs), a large
one to the southwest of the filament (marked as ‘CH1’) and a smaller one to the northeast
(marked as ‘CH2’). Additionally, we note an S-shaped feature to the north of the filament
(marked as ‘S’), reminiscent of a sigmoid (e.g., Green et al., 2007)—this structure is visible
in several SDO/AIA channels, including 94 Å and 131 Å, which are known to respond to
hotter plasma (O’Dwyer et al., 2010).

Figure 1. Overview of the 2018 August 20 eruptions from remote-sensing solar disc imagery.

(a) Pre-eruptive configuration on the solar disc. The erupting S-shaped structure (‘S’) and fila-

ment (‘F’), as well as the two nearby coronal holes (‘CH1’ and ‘CH2’) are labelled. (b) and (d)

Zoomed-in images of the erupting sigmoid (CME1) and filament (CME2), respectively. (c) and

(e) Base-difference images of the sigmoid and filament eruptions, respectively, with magnetogram

data saturated to ±100 G overlaid (red = positive, blue = negative). The approximate eruption

footpoints are indicated with green circles in both panels.

Both structures (i.e., the S-shaped feature and the filament) began erupting essen-
tially at the same time, around 07:30 UT on 20 August, possibly in a sympathetic fashion
(e.g., Török et al., 2011; Lynch and Edmondson, 2013). Whilst the S-shaped structure
(Figure 1(b)) left the Sun rather rapidly (no signatures of the event were visible after a
few hours), the filament (Figure 1(d)) was involved in a much slower eruption, with post-
eruption arcades still developing many hours after the onset and into the following day.
Therefore, in this work we will define the S-shaped feature eruption as CME1, and the fila-
ment eruption as CME2. Around 18:30 UT on 20 August, a small portion of filament lying
between the source regions of CME1 and CME2 erupted in a jet-like fashion (see Mishra
and Srivastava, 2019, for details)—this may be considered as a “second part” of a two-step
filament eruption, as suggested by Abunin et al. (2020). The full sequence of events observed
by SDO is shown in EUV at 211 Å in Movie S1.
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Analysis of the pre-eruptive magnetic configuration of the two CMEs (see Palmerio
et al., 2017, and references therein) suggests that CME1 was characterised by right-handed
chirality (note its forward-S shape), whilst CME2 was left-handed (note its reverse S-shape).
The approximate eruption footpoints (estimated via the locations of coronal dimmings; e.g.,
Reinard and Biesecker , 2009; Thompson et al., 2000) and the magnetic field polarities in
which they are rooted are shown in Figure 1(c) for CME1 and Figure 1(e) for CME2. Given
that CME2 originated from a decayed active region, it is evident that its northeastern
(southwestern) footpoint is rooted in a patch of positive (negative) polarity. Thus, its flux
rope magnetic configuration upon eruption should be west–south–east (WSE), following the
convention of Bothmer and Schwenn (1998) and Mulligan et al. (1998). CME1, on the
other hand, originated from a region of much weaker, quiet-Sun magnetic field, making
determination of its magnetic structure and orientation more difficult. Nevertheless, the
easternmost footpoint seems to be rooted in a patch of positive polarity, which for a right-
handed flux rope would result somewhere between a west–north–east (WNE) and a south–
west–north (SWN) type.

2.2 Solar Corona

At the time of the 20 August 2018 eruptive events, white-light imagery of the so-
lar corona was available from the Large Angle and Spectrometric Coronagraph (LASCO;
Brueckner et al., 1995) onboard the Solar and Heliospheric Observatory (SOHO; Domingo
et al., 1995), located at Earth’s Lagrange L1 point, as well as the coronagraphs forming
part of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI; Howard
et al., 2008) suite onboard STEREO-A. Given that both CME1 and CME2 originated close
to the central meridian as seen from Earth, we expect SOHO to have observed the eruptions
approximately along their propagation direction, whilst STEREO-A had a near-quadrature
view of the events. Such observations are summarised in Figure 2, and the full sequence of
imagery from STEREO/SECCHI/COR2-A and SOHO/LASCO/C2 is provided in Movie S2
and Movie S3, respectively.

First of all, we note the presence of coronal outflows preceding the eruption(s), indi-
cated in Figure 2(a,f) and possibly associated with blobs originating from the cusp of the
helmet streamer belt (e.g., Lynch, 2020; Wang et al., 2000). CME1 first appeared in the
COR2-A field of view around 10:24 UT on 20 August (Figure 2(a–c)), featuring a rather
irregular morphology (it could be classified as a ‘jet’ according to the definition of Vourlidas
et al., 2013, 2017). Furthermore, it appeared very faintly in STEREO-A imagery (and is
more visible in Movie S2 than in the still images shown in Figure 2(a–c)), likely partially
due to the presence of the preceding outflow along the line of sight, and was not clearly
discernible in SOHO data (Figure 2(e–g)). We note that CME events in the solar corona
that appear faint/jet-like from one viewpoint and are not visible at all in another have
been reported in previous studies, and may cause moderate geomagnetic disturbances (e.g.,
Palmerio et al., 2019).

CME2 first appeared in the COR2-A field of view around 13:24 UT on 20 August
(Figure 2(i–k)) and in the C2 field of view around 21:48 UT on the same day (Figure 2(m–
o)). This event was significantly more evident than CME1 in images from both perspectives,
with a flux rope-like morphology observed by STEREO-A and a full halo (albeit very faint)
detected by SOHO. In particular, COR2-A imagery reveals an initially asymmetric structure,
with its southern leg ahead of the northern one, that slowly swells before finally accelerating
away from the Sun in a streamer-blowout fashion (e.g., Vourlidas and Webb, 2018). As the
CME travelled through the solar corona, its front became progressively less asymmetric,
possibly indicating that either the northern leg caught up with the southern one, or that
the whole structure rotated during its early propagation.

In order to estimate the geometric and kinematic properties of CME1 and CME2
through the solar corona, we fit both eruptions as they appeared in coronagraph imagery
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Figure 2. Overview of the 2018 August 20 eruptions from remote-sensing coronagraph imagery

(shown here in running difference with ∆t = 1 hr). The first appearances of the preceding outflow,

CME1, and CME2 in the field of view each observing instrument are indicated in the respective

panels. The rightmost column shows coronagraph images with the Graduated Cylindrical Shell

wireframes overlaid, showing the reconstruction of CME1 in panels (d) and (h) and CME2 in

panels (l) and (p).

with the Graduated Cylindrical Shell (GCS; Thernisien et al., 2006, 2009) model. This will
also serve to determine the CME input parameters needed for heliospheric modelling of their
propagation through the structured solar wind (see Section 3). The GCS model consists of a
parametrised shell (with six free parameters) intended to reproduce the flux rope morphology
of CMEs, which can be applied to one or more nearly-simultaneous images and visually
adjusted until its projection onto each field of view best matches the observations. Examples
of GCS results are shown in the rightmost column of Figure 2, for both CME1 (Figure 2(d,h))
and CME2 (Figure 2(l,p)). Both eruptions are estimated to have a low inclination to the
solar equatorial plane in the outer solar corona, and the CME2 results indicate that it
is larger (extending ∼60◦ versus ∼40◦ along the axis) but slower (∼300 km·s−1 versus
∼500 km·s−1) than CME1. We remark, however, that the GCS model is applied to single-
point (STEREO-A) measurements for CME1 (Figure 2(h) simply shows the projection of
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the shell in Figure 2(d) onto the C2 field of view), inevitably resulting in larger uncertainties.
Considering the flux rope types estimated at the Sun (see Section 2.1) and the low inclination
of both eruptions through the solar corona, CME1 is expected to have an SWN configuration,
whilst CME2 would reach a north–west–south (NWS) orientation via a counterclockwise
rotation of its axis (as expected for left-handed flux ropes, e.g., Green et al., 2007; Lynch
et al., 2009).

2.3 Inner Heliosphere

After leaving the COR2-A field of view, the eruptions under analysis were observed by
the Heliospheric Imager (HI; Eyles et al., 2009) cameras onboard STEREO-A. Figure 3 shows
an overview of the observations of CME1 and CME2 through the STEREO/SECCHI/HI1-A
camera, whilst the complete set of images is provided in Movie S4.

   

   

Figure 3. Overview of the 2018 August 20 eruptions from remote-sensing inner heliospheric

imagery (shown here in running difference with ∆t = 40 min). The locations of the preceding

outflow, CME1, and CME2 are indicated in each panel, where appropriate. The vertical band

visible throughout the image sequence is caused by Mercury.

CME1 first appeared in the HI1-A field of view at 15:29 UT on 20 August, whilst
CME2 emerged at 06:09 UT on 21 August. CME1 maintained a rather irregular morphology,
similar to that observed in COR2-A imagery (see Figure 2(a–c) and Movie S2). CME2, on
the other hand, displayed a significantly flatter front than the one featured in COR2-A
observations (see Figure 2(e–g) and Movie S2), likely due to pancaking, i.e. flattening of
the CME cross-section as it propagates through a latitudinally-structured ambient wind
(e.g., Owens, 2006; Riley and Crooker , 2004). Furthermore, the front of CME1 appeared
well ahead of CME2 throughout the sequence of frames in which both eruptions are visible,
hence we do not observe signatures of CME–CME interaction in HI1-A imagery.
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3 Heliospheric Context

In order to explore the propagation of CME1 and CME2 within their corresponding
inner heliospheric context, we employ the Wang–Sheeley–Arge (WSA; Arge et al., 2004)
coronal model coupled with the Enlil (Odstrcil , 2003) heliospheric model, hereafter WSA–
Enlil. WSA is used to generate the solar wind background from synoptic magnetogram
maps (in this case, from the Global Oscillation Network Group or GONG; Harvey et al.,
1996), which Enlil takes as input at its inner boundary (set at 21.5R� or 0.1 AU). Enlil
then models the heliospheric conditions outwards to an outer boundary (in this case set
at 2 AU) by solving the magnetohydrodynamic (MHD) equations. CMEs are inserted in
WSA–Enlil at the heliospheric inner boundary as hydrodynamic structures, i.e. lacking an
internal magnetic field. We derive the input parameters for CME1 and CME2 (shown in
Table 1) entirely from the GCS reconstructions outlined in Section 2.2 and Figure 2. The
latitudes (θ), longitudes (φ), and tilts (γ) are taken directly from their values at the last
GCS reconstructions before the CMEs left the COR2-A field of view (at the times shown
in the rightmost column of Figure 2). Both CMEs are inserted with an elliptical cross-
section, and their semi-major (ψ1) and semi-minor (ψ2) angular extents are obtained by
“cutting a slice” out of the GCS shell (see Thernisien, 2011, for details). Finally, the CME
insertion speeds (V0) are calculated from the CME apex height at the time of the last GCS
reconstruction (again, shown in the rightmost column of Figure 2) and the height obtained
at the reconstruction performed one hour earlier, and the insertion times (t0) are estimated
by propagating the “final” CME apex until 21.5R� assuming constant speed V0.

Table 1. CME Input Parameters for the WSA–Enlil Simulation Run.

CME t0 θ φ γ ψ1 ψ2 V0
# [UT] [◦] [◦] [◦] [◦] [◦] [km·s−1]

1 2018-08-20T18:16 12 2 10 21 12 483
2 2018-08-21T10:56 5 10 9 30 16 290

Note. The table shows, from left to right: CME number, time (t0) of insertion of the CME at the Enlil

inner boundary of 21.5R� or 0.1 AU, latitude (θ) and longitude (φ) of the CME apex in Stonyhurst

coordinates, tilt (γ) of the CME axis with respect to the solar equator (defined positive for

counterclockwise rotations), semi-major (ψ1) and semi-minor (ψ2) axes of the CME cross-section, and

CME speed at 21.5R� (V0).

An overview of the WSA–Enlil simulation results is shown in Figure 4 and a full
animation is shown in Movie S5. The top panels show snapshots of the solar wind radial
speed (Vr) on the ecliptic plane, from which it is evident that both CME1 and CME2 are
“sandwiched” between two fast streams marked as ‘HSS1’ and ‘HSS2’, which we attribute
to CH1 and CH2, respectively (see Section 2.1 and Figure 1). ‘ICME1’ and ‘ICME2’ refer
to the interplanetary CMEs (ICMEs; e.g., Kilpua et al., 2017) counterparts of CME1 and
CME2, respectively. Note that here we refer to ICME as the interplanetary structure as
a whole, often composed of a shock, a sheath, and an ejecta. Hence, the ICME arrival
time considered here corresponds to the interplanetary shock arrival. By complementing
the overall simulation results on the ecliptic plane with the synthetic solar wind speed
(V ) measurements at Earth and Mars shown in the bottom panels of Figure 4, it is clear
that ICME1 and ICME2 would be expected to impact Earth as successive, largely separate
structures, whilst the two would have merged by the time they reach Mars. In the context
of the events considered here, there are two possible reasons as to why the slower CME2
would catch up with the initially faster CME1: (1) Due to solar wind preconditioning,
resulting in a rarefied ambient medium after the passage of CME1 and, thus, diminished
drag (e.g., Temmer and Nitta, 2015), as well as (2) due to the presence of HSS2 trailing
CME2, resulting in less deceleration or even acceleration (e.g., Winslow et al., 2021). We
approximately estimate ICME1 to hit Earth on 2018-08-24T02:25, ICME2 to hit Earth on
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Figure 4. Overview of the WSA–Enlil simulation results at Earth and Mars. Top: Snapshots

of the simulation results for the radial speed Vr on the ecliptic plane around the arrival times at

(left) Earth and (right) Mars. Bottom: Results for the solar wind speed V at Earth and Mars.

2018-08-24T20:45, and the combined ICME1+ICME2 structure to hit Mars on 2018-08-
25T09:45.

These evaluations and estimates will be used as support to interpret the in-situ mea-
surements at both Earth and Mars, presented in Section 4. Nevertheless, there are a couple
of caveats to consider when analysing these results. For example, the lack of an internal
magnetic field in the modelled CMEs inevitably results in unrealistic CME–CME interaction
outcomes, since the resulting structure simply corresponds to the superposition of two hy-
drodynamic pulses. In fact, the ICME ejecta boundaries identified in the simulation (black
contours in Figure 4) are estimated in the model via the so-called ‘cloud tracer’ parame-
ter, which tracks the injected mass based on the density enhancement with respect to the
background solar wind, i.e. they can be considered merely an approximation of the spatial
extent of a fully-magnetised ejecta.
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4 In-Situ Observations

In this section, we show and analyse in-situ observations following the solar events
described in Section 2 at both Earth (Section 4.1) and Mars (Section 4.2). Then, in Section 5,
these measurements will be synthesised and discussed in relation to the heliospheric context
presented in Section 3.

4.1 Measurements at Earth

In-situ measurements at Earth are shown in Figure 5. They include: magnetic field
data from the Magnetic Field Investigation (MFI; Lepping et al., 1995), plasma data from
the Solar Wind Experiment (SWE; Ogilvie et al., 1995), and electron pitch angle distribution
(PAD) data from the Three-Dimensional Plasma and Energetic Particle Investigation (3DP;
Lin et al., 1995) instruments onboard the Wind (Ogilvie and Desch, 1997) spacecraft at the
Sun–Earth L1 point; suprathermal and energetic ion data from the Electron, Proton, and
Alpha Monitor (EPAM; Gold et al., 1998) onboard the Advanced Composition Explorer
(ACE; Stone et al., 1998) also at the Sun–Earth L1 point; space-based galactic cosmic ray
(GCR) estimates from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER;
Spence et al., 2010) onboard the Lunar Reconnaissance Orbiter (LRO; Chin et al., 2007)
orbiting Luna; ground-based GCR estimates from the Thule, Nain, and South Pole stations
part of the Neutron Monitor Database (NMDB; Mavromichalaki et al., 2011); as well as Kp
index from the National Geophysical Data Center (NGDC) and Dst index from the World
Data Center (WDC) for Geomagnetism, Kyoto.

The sequence of events observed at Earth commenced with a weak (i.e., characterised
by small downstream-to-upstream ratios in speed, magnetic field magnitude, and plasma
density) interplanetary shock (solid pink line in Figure 5) followed by a weak flux-rope-like
ejecta (shaded pink region in Figure 5), which we attribute to ICME1, i.e. the interplanetary
counterpart of CME1. We fit the ejecta with the Elliptic-Cylindrical (EC; Nieves-Chinchilla
et al., 2018) analytical flux rope model (shown in blue superposed on the Wind/MFI data
in Figure 5), resulting in a moderately inclined structure with axis orientation (Θ, Φ) =
(36◦, 230◦) in Geocentric Solar Ecliptic (GSE) coordinates and right-handed chirality, which
roughly corresponds to a SWN-type flux rope. About two-thirds into the ICME1 flux rope,
a second weak interplanetary shock (solid grey line in Figure 5) was detected, displaying
classic shock-in-ejecta signatures (e.g., Lugaz et al., 2015): Proton temperature and plasma
beta maintained lower-than-ambient values (typical ICME ejecta indicators; e.g., Zurbuchen
and Richardson, 2006) and all the magnetic field components did not display changes in the
clock angle after the shock passage. We attribute this shock to ICME2, i.e. the interplanetary
counterpart of CME2, suggesting that the two eruptions were at the initial stages of their
CME–CME interaction process at the time they travelled past Earth. We note no significant
particle enhancements in ACE/EPAM data, no Forbush decreases (e.g., Forbush, 1937) in
the GCR intensity, and no major geomagnetic effects associated with ICME1 in terms of
the Kp and Dst indices. Nevertheless, although the relatively low values of speed, dynamic
pressure, and magnetic field did not result in a geomagnetic storm, some substorm activity
was observed, with the AE index peaking at &700 nT (not shown), likely in response to the
period of weakly negative BZ in the leading portion of the ICME ejecta.

After a brief period of high density and dynamic pressure measured by Wind/SWE
as well as a rather weak but turbulent magnetic field measured by Wind/MFI, which has
been interpreted as a signature of interaction between two successive CMEs (Lugaz et al.,
2005, 2017; Wang et al., 2003) and evidently part of the ICME2 sheath, a clear flux-rope
ejecta (shaded grey region in Figure 5) was detected. Fitting results with the EC model
(shown in blue below the Wind/MFI data in Figure 5) yield a left-handed flux rope with
a rather high inclination and central axis orientation (Θ, Φ) = (−70◦, 145◦) in GSE co-
ordinates, corresponding roughly to a WSE-type rope. Contrary to ICME1, ICME2 fea-
tured clear counterstreaming electron signatured in Wind/3DP data and was accompanied

–10–



manuscript submitted to Space Weather

 2018-08-24  2018-08-25  2018-08-26  2018-08-27  2018-08-28
12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00
0

2

4

6

Kp

OMNI (n)

5

10

15

20

|B
| [

nT
]

ICME1 ICME2 SIR HSS2
Wind/MFI (a)

10

0

10

20

B G
SE

 [
nT

] (b)

BX
BY
BZ

90

45

0

45

90

B
 [

]

(c)

0

90

180

270

B
 [

]

(d)

300

400

500

600

V 
[k

m
s

1 ] Wind/SWE (e)

10

20

30

N
p 

[c
m

3 ] (f)

2.5

5.0

7.5

P d
yn

 [
nP

a] (g)

104

105

T p
 [

K]

(h)

10 2

10 1

100
Wind/MFI+SWE (i)

0

45

90

135

180

PA
D

 [
] Wind/3DP (j)

10 1

100

E 
[M

eV
] ACE/EPAM (k)

2.5

0.0

2.5

5.0

G
CR

va
r [

%
]

(s
pa

ce
) LRO/CRaTER (l)

2

0

2

G
CR

va
r [

%
]

(g
ro

un
d)

NMDB (m)

THUL
NAIN
SOPO

0.6

0.8

1.0

1.2

1.4

e
 n

or
m

 fl
ux

(1
21

 e
V)

100

101

102

103

104

io
n 

flu
x

[c
m

2
sr

s
M

eV
]

1

100

0

D
st

 [
nT

]

Figure 5. In-situ measurements at Earth, showing (a) magnetic field magnitude, (b) magnetic

field components in GSE coordinates, (c) θ and (d) φ components of the magnetic field, solar wind

(e) speed, (f) density, (g) dynamic pressure, and (h) temperature, (i) plasma β, (j) electron pitch

angle distribution, (k) ion intensities, galactic cosmic ray variation (l) in space and (m) on ground,

and (n) Kp and Dst indices, quantifying geoeffectiveness. The ejecta intervals show flux rope fitting

results with the Elliptic-Cylindrical model superposed on the magnetic field data.
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by a weak (∼2% drop) Forbush decrease detected both in space by LRO and on ground
by different neutron monitors, albeit with slightly different profiles—the LRO/CRaTER
data are closest to the profile measured on ground at the Thule station. Most strikingly,
ICME2 was particularly geoeffective, with a maximum Kp of 7+ (corresponding to a G3
storm, see https://www.swpc.noaa.gov/noaa-scales-explanation) and a minimum Dst
of −175 nT (well exceeding the usual threshold for “strong” storms of Dstmin ≤ −100 nT;
e.g., Zhang et al., 2007), while the AE index peaked at &2200 nT (not shown). These factors
make ICME2 the driver of a so-called “problem geomagnetic storm” (Nitta et al., 2021), not
because its source was stealthy or elusive (see Nitta and Mulligan, 2017, for a discussion
on CMEs without appreciable low-coronal signatures on the Sun), but because its effects
at Earth were largely unexpected given the slow and “unimpressive” nature of CME2 at
the Sun. In fact, the solar wind speed remained around values of ∼400 km·s−1 throughout
the ICME passage, indicating that the storm was mostly driven by the sustained southward
BZ magnetic field component within the ejecta, which peaked at −16 nT. Other factors
contributing to the intensification of the geomagnetic storm may have been the interaction
with the preceding ICME1, leading to compression at the front of the ejecta, as well as
the presence of a nearby CH (in this case CH2, see Figure 1) back at the Sun, resulting in
CME–HSS interaction in interplanetary space and compression in the trailing part of the
ejecta (e.g., Nitta et al., 2021).

Indeed, the ICME2 ejecta was immediately followed by a small SIR (shaded green
region in Figure 5) and related HSS, most likely due to CH2 and thus indicated in Figure 5
as HSS2. That ICME2 and HSS2 were in the process of interacting is evident by the
increasing solar wind speed and temperature detected by Wind/SWE, as well as the particle
enhancement at suprathermal energies measured by ACE/EPAM in the trailing part of the
ejecta. By the time Earth was impacted by HSS2, the intense geomagnetic storm had
essentially waned, with the Kp index briefly reaching again values up to 6− almost a full
day later. Nevertheless, a sequence of substorms persisted through the passage of the SIR
and the initial portion of the following HSS2, with the AE index peaking between ∼1000
and ∼1500 nT for each event (not shown).

4.2 Measurements at Mars

In-situ measurements at Mars are shown in Figure 6. They include: magnetic field
data from the Magnetometer (MAG; Connerney et al., 2015), plasma data from the Solar
Wind Ion Analyzer (SWIA; Halekas et al., 2015), electron PAD data from the Solar Wind
Electron Analyzer (SWEA; Mitchell et al., 2016), and suprathermal/energetic ion data as
well as space-based GCR estimates from the Solar Energetic Particle (SEP; Larson et al.,
2015) instruments onboard the Mars Atmosphere and Volatile Evolution (MAVEN; Jakosky
et al., 2015b) spacecraft orbiting Mars; plasma data from the Analyzer of Space Plasmas
and Energetic Atoms (ASPERA-3; Barabash et al., 2006) onboard Mars Express (MEX;
Chicarro et al., 2004) also orbiting Mars; ground-based GCR estimates from the Radiation
Assessment Detector (RAD; Hassler et al., 2012) onboard the Curiosity rover part of the
Mars Science Laboratory (MSL; Grotzinger et al., 2012); and Magnetospheric Disturbance
Index (MDI; Gruesbeck et al., 2021) data. MDI takes MAVEN/MAG measurements as input
and is used to estimate the level of the disturbance to the Martian system, or arieffectiveness.

The sequence of events at Mars commenced again with a possible weak interplanetary
shock (solid pink line in Figure 6), identified mainly via a peak in ion fluxes at suprather-
mal energies detected by MAVEN/SEP because of the frequent gaps in magnetic field and
plasma data. In fact, these data gaps are due to the MAVEN and MEX orbits, result-
ing in only a portion of their path around Mars sampling the upstream solar wind. The
MEX/ASPERA-3 measurements displayed in Figure 6 consist of averages along the space-
craft’s orbit, and the MAVEN/MAG and MAVEN/SWIA data show solar wind periods
identified according to the algorithm of Halekas et al. (2017). The MAVEN/MAG measure-
ments shown in lighter colours represent data that are not part of the “undisturbed” solar
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Figure 6. In-situ measurements at Mars, showing (a) magnetic field magnitude, (b) magnetic

field components in MSO coordinates, (c) θ and (d) φ components of the magnetic field, solar wind

(e) speed, (f) density, (g) dynamic pressure, and (h) temperature, (i) plasma β, (j) electron pitch

angle distribution, (k) ion intensities, galactic cosmic ray variation (l) in space and (m) on ground,

and (n) MDI index, quantifying arieffectiveness. The lighter portions of magnetic field data are

sampled in the Martian foreshock rather than in the solar wind.
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wind but are still outside the Martian bow shock, i.e. they are collected in the foreshock
region. The possible interplanetary shock is followed by a weak ejecta (shaded pink region
in Figure 6), with directions of the magnetic field vectors closely resembling those observed
at Earth for ICME1 (see Figure 5). The θB component rotates from south to north and the
φB one points to the west in Mars Solar Orbital (MSO) coordinates (i.e., the GSE equivalent
for Mars), indicating a SWN-type flux rope. Considering the ICME1 shock speed at Earth
(∼385 km·s−1) and the Earth–Mars radial distance at the time of ∼0.4 AU, the structure
would have taken ∼43 hours to propagate from one planet to the next, in agreement with
the timing of the observed candidate shock at Mars. Hence, we attribute this structure to
ICME1. Approximately in the middle of the ejecta, we identify a possible second inter-
planetary shock (dashed grey line in Figure 6), again because of a small enhancement in
the MAVEN/SEP spectrum and because the solar wind speed measured by MAVEN/SWIA
displays a small increase afterwards. This is likely the ICME2 shock, still travelling through
the ICME1 ejecta—again, the timing (∼44 hours for a shock moving at ∼380 km·s−1 across
∼0.4 AU) is consistent between the observations at Earth and Mars. ICME1 was charac-
terised by some periods of bidirectional electrons measured by MAVEN/SWEA, especially
during the first half of the ejecta, no Forbush decreases in space nor on ground, and no
significant disturbances to the Martian system.

After the passage of the weak ICME1, a period of clear enhanced magnetic field mag-
nitude followed (shaded green region in Figure 6). However, this structure displays classic
signatures of a SIR rather than of an ICME (e.g., Kataoka and Miyoshi , 2006), including
the absence of an organised internal magnetic field throughout its extent, and an increase in
solar wind speed and temperature as well as a decrease in density at the stream interface.
This suggests that the ejecta of ICME2, which was rather prominent at Earth (see Figure 5),
largely missed Mars. It is unclear whether minor portions of the ejecta interacted and/or
merged with the following SIR at Mars’s heliolongitude, especially given the numerous data
gaps throughout the structure. The plasma profiles measured by MAVEN/SWIA in the
first half of the SIR resemble those observed at Earth in the ICME2 ejecta and following
SIR (see Figure 5), but the absence of bidirectional electrons in MAVEN/SWEA data as
well as the disorganised magnetic field components seen by MAVEN/MAG suggest that, if
material from CME2 was indeed detected at Mars, the ejecta had lost its coherence and flux
rope structure (at least locally) due to interaction with the structured solar wind. The SIR
was accompanied by enhanced ion fluxes measured by MAVEN/SEP at sub-MeV energies
(see Richardson, 2004, for a review on SIR-associated energetic particle observations), as
well as by a weak (∼2% drop) Forbush decrease measured both in space by MAVEN/SEP
and on ground by MSL/RAD (see Guo et al., 2018, for an overview of space- and ground-
based observations of CME- and SIR-driven Forbush decreases at Mars). We note that no
significant variations were detected in the MEX/ASPERA-3 Ion Mass Analyser (IMA) back-
ground counts (not shown), which can be used as proxies for GCR intensity (see Futaana
et al., 2022, for a description of the data set). Additionally, the SIR was rather arieffective
according to MDI values, peaking at ∼7—we note that Gruesbeck et al. (2021) reported a
peak MDI of ∼4 for the 8 March 2015 ICME studied by Jakosky et al. (2015a) and of ∼10
for the 13 September 2017 ICME analysed by Lee et al. (2018). Finally, as expected, the
SIR was ultimately followed by HSS2.

5 Discussion

The eruptive events that took place during the second half of August 2018 were typical
of solar minimum conditions: They did not originate from active regions nor did they display
an “explosive” nature, they were slow, and they were rather “isolated” (i.e., there was no
other activity elsewhere on the Sun during the same period). Nevertheless, such a seemingly
simple picture resulted in a number of unexpected outcomes, including a major problem
storm at Earth and a missed CME impact at Mars, despite the small (<10◦) longitudinal
separation between the two planets. Here, we synthesise the solar and heliospheric obser-
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vations discussed in the previous sections together with the WSA–Enlil modelling results,
and elaborate on the possible evolutionary scenario that is consistent with measurements at
both planets.

First of all, we note that the CME arrival times estimated by WSA–Enlil (see Figure 4)
are between ∼4 hours (ICME1 at Earth) to ∼12 hours (ICME1 at Mars) too early compared
to observations. This is likely due to HSS2 impacting Earth approximately 1 day too
early and Mars approximately 2 days too early in the simulation, resulting in a diminished
deceleration of the CMEs ahead due to solar wind drag. Nevertheless, Gressl et al. (2014)
found that predicted HSS arrival times in MHD models have uncertainties of the order of
about one day, suggesting that the period under analysis was not particularly challenging
in terms of characterising the solar wind background, since it was affected by typical errors.
Arrival times aside, the sequence of events at Earth was well reproduced in the simulation
(see Movie S5 for a more complete view of the modelling results): ICME2 closely followed
ICME1 (and the eruptions had just started to interact by the time they crossed Earth) and
was immediately trailed by HSS2. What was impossible to forecast from the WSA–Enlil
simulation was the impressive magnitude of the geomagnetic storm driven by ICME2.

In fact, the factors that led to the unexpected geoeffectiveness of ICME2 at Earth
may also explain why the same structure missed Mars. This is illustrated in Figure 7, which
shows a comparison of the CME flux rope orientations retrieved from solar observations
(i.e., the GCS reconstructions in Figure 2) and in-situ measurements at Earth (i.e., the
EC fits in Figure 5). It is evident that CME1/ICME1 maintained a low inclination to
the equatorial plane throughout its heliospheric evolution, resulting in a flux rope type
that was estimated to be SWN in the solar corona, at Earth, and later at Mars. CME2,
on the other hand, left the Sun with a WSE configuration but was later observed in the
solar corona to have assumed a lowly-inclined orientation (possibly NWS, see especially its
morphology in SOHO/LASCO data in Figure 2(m–p)). At Earth, however, the retrieved
flux rope type of ICME2 was again WSE, leading to the strong southward field that mainly
drove the observed geomagnetic storm. We speculate that interaction with the following
HSS2 resulted in both CME rotation towards a high-inclination configuration and CME
deflection towards western heliolongitudes. The latter effect is marginally visible in the
WSA–Enlil simulation (see Movie S5), whilst the former could not be reproduced with the
current set up since the two CMEs have been modelled without an internal magnetic field,
leading to unrealistic CME–CME and CME–HSS interaction processes. The rotation and
deflection of the CME2 flux rope ejecta in interplanetary space may account for the fact
that only the ICME2 shock seems to have impacted Mars. Of course, these considerations
imply that CME2 was indeed characterised by a low inclination with respect to the solar
equator throughout the solar corona—since the GCS reconstructions were performed using
the only two available viewpoints of Earth (halo event) and STEREO-A (limb event), the
resulting morphology may have been under-constrained and thus associated with rather
large uncertainties.

Another interesting result is that, whilst Mars was not impacted by the ICME2 ejecta,
it was still affected by significant large-scale disturbances during the period under study,
namely due to the SIR ahead of HSS2. At Earth, the SIR was not particularly geoeffective,
suggested by the fact that the Dst index did not display a second dip after the passage of
ICME2 (although it does appear to have interrupted the recovery of the ongoing storm)—it is
worth noting, however, that the presence of ICME2 at Earth likely impeded the formation
of a proper slow–fast stream interaction region, and that what we identified as a small
SIR displays characteristics of a CME–HSS interaction region. At Mars, the SIR passage
lasted for over a day and was fundamentally responsible for the observed arieffectiveness.
We remark, nevertheless, that the plasma signatures in the first half of the SIR at Mars
displayed similarities with those observed in the ICME2 ejecta at Earth, possibly indicating
that some material from CME2 may have become part of the SIR due to interaction with
the structured solar wind. Whilst it is not known whether similar effects would have been
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Figure 7. Comparison of the GCS-derived CME orientation in the solar corona and EC-derived

ICME ejecta orientation at Earth for (a) CME1/ICME1, in pink, and (b) CME2/ICME2, in grey.

The croissant-like features show the CME morphology obtained via the GCS reconstructions shown

in Figure 2, whilst the cylinders represent the corresponding ICME structures retrieved via the EC

fits displayed in Figure 5.

experienced at Mars had the ICME2 ejecta impacted the planet as a well-defined flux rope
structure, we can speculate that, during solar minimum conditions, when CMEs are on
average less energetic, we may generally expect higher arieffectiveness from SIRs than from
ICMEs (contrarily to Earth, where the most geoeffective structures are associated with
CMEs across the whole solar cycle; e.g., Richardson et al., 2001). In fact, whilst CMEs tend
to expand (and thus experience a decrease in speed, density, and dynamic pressure) until
∼10–15 AU, where they reach pressure balance with the ambient wind (e.g., von Steiger and
Richardson, 2006), SIRs are known to increase the compression of the fast stream against the
slow stream with heliocentric distance until a few AUs (e.g., Forsyth and Marsch, 1999)—for
example, Jian et al. (2008) found a significant increase in SIR-associated shock detections
from Venus to Earth, and Geyer et al. (2021) found that the occurrence of SIR-driven fast-
forward shocks is three times higher at Mars than at Earth. Additionally, Edberg et al.
(2010) found that most solar wind pressure pulse events—which lead to a 2.5-fold increase
in atmospheric escape—correspond to SIR drivers, whilst only a few are driven by CMEs.

6 Concluding Remarks

In this work, we have analysed the eruption, evolution, and impact at Earth and Mars
of a series of solar transients during the second half of August 2018, i.e. close to the activity
minimum between solar cycles 24–25. In particular, we have tracked the eruption (on 20
August 2018) and propagation of two CMEs (CME1 and CME2) throughout their journey
in the inner heliosphere as they were followed by a fast solar wind stream (HSS2). We found
that both planets experienced space weather effects, but due to different drivers: at Earth,
an ICME ejecta (ICME2) with a strong southward component of its magnetic field was the
main driver of a major geomagnetic storm, whilst at Mars, the main structure responsible
for the observed arieffectiveness was a SIR. The first event in the sequence of transients, i.e.
a preceding, smaller ICME (ICME1), was detected at both planets but had no significant
effects on their space environments.
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We also compared in-situ measurements at Earth and Mars with simulation results
using the MHD WSA–Enlil model. First of all, we noted that the observed geomagnetic
storm could not have been predicted with the used set up, since the CMEs were modelled
without an internal magnetic field. Heliospheric models that include a magnetised CME are
expected to provide more realistic insights into the dynamics of CME–CME and CME–HSS
interaction (e.g., Asvestari et al., 2022; Scolini et al., 2020). The hydrodynamic nature of the
modelled CMEs may also explain why CME2 was predicted to merge with CME1 beyond
1 AU and ultimately impact Mars, whilst it likely rotated and drifted towards western
heliolongitudes due to interactions with the following HSS2.

At Mars, the SIR-induced effects would have been predicted more successfully with
the modelling set up used in this study, although the HSS of interest (HSS2) was simulated
to arrive earlier than observed at both planets. Riley et al. (2012) found that global MHD
models can diverge more or less significantly from observations in capturing the overall
structure of the ambient solar wind even for solar minimum periods, when conditions are
relatively steady. Jian et al. (2011) reported that SIR timing predictions can have temporal
offsets of up to two days at 1 AU and up to four days at 5 AU. Large-scale efforts dedicated
to benchmarking solar wind models (e.g., Reiss et al., 2022) will likely lead to improved
predictions of solar wind structures (including SIRs and CMEs) and their effects at different
planets. In fact, a well-constrained and well-reproduced solar wind background is of great
importance for simulating solar minimum CMEs, which tend to alter their structure and
orientation during propagation largely due to interactions with the steady wind (see, e.g.,
the May 1997 event; Cohen et al., 2010; Odstrcil et al., 2004; Titov et al., 2008).

Finally, we comment on two aspects that may be of interest to martian space weather
research. First, although most major geomagnetic storm are associated with CMEs, it has
been reported that SIRs can occasionally drive strong responses at Earth (Richardson et al.,
2006). Given that SIRs are expected to strengthen beyond 1 AU, an interesting exercise
would be to follow one such strongly geoeffective structure from Earth to Mars and evaluate
its arieffectiveness—as space weather at Mars is a relatively novel area of research, it is
currently unclear which solar wind transients are generally associated with the most severe
disturbances. Additionally, the different types of magnetospheres may lead to different solar
wind driving conditions at Earth and Mars. Of course, analysis of the solar wind drivers of
martian storms would strongly benefit from continuous space weather monitoring, perhaps
via a satellite placed at the Sun–Mars L1 point as is the case for Earth (e.g., Sánchez-Cano
et al., 2021).

Data Availability Statement

Solar disc and coronagraph data from SDO, SOHO, and STEREO are openly avail-
able at the Virtual Solar Observatory (VSO; https://sdac.virtualsolar.org/), whilst
STEREO/HI Level-2 data can be retrieved from the UK Solar System Data Centre (UKSSDC;
https://www.ukssdc.ac.uk). These data were visualised, processed, and analysed trough
SunPy (SunPy Community et al., 2020), IDL SolarSoft (Bentely and Freeland , 1998), and the
ESA JHelioviewer software (Müller et al., 2017). Enlil simulation results have been provided
by the Community Coordinated Modeling Center at Goddard Space Flight Center through
their public Runs on Request system (http://ccmc.gsfc.nasa.gov). The full simulation
results are available at https://ccmc.gsfc.nasa.gov/results/viewrun.php?domain=SH&
runnumber=Erika_Palmerio_050922_SH_1 (run id: Erika Palmerio 050922 SH 1). Wind
and ACE data are publicly available at NASA’s Coordinated Data Analysis Web (CDAWeb)
database (https://cdaweb.gsfc.nasa.gov/index.html/). NMDB data are publicly avail-
able at http://www.nmdb.eu. LRO, MAVEN, and MSL data can be accessed at the Plan-
etary Plasma Interactions (PPI) Node of NASA’s Planetary Data System (PDS) database
(https://pds-ppi.igpp.ucla.edu). MEX data are openly available at ESA’s Planetary
Science Archive (PSA) database (https://archives.esac.esa.int/psa).
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